
1

DaCoTraP – A web based platform for

metal forming process chain

BIRÓ VENCEL *, BANABIC DOREL **

* Technical University of Cluj-Napoca, vencel.biro@tcm.utcluj.ro

** Technical University of Cluj-Napoca, banabic@tcm.utcluj.ro

Abstract
A standard metal forming research process includes equipments in different locations. The

data between the testing, simulation and manufacturing equipments are usually transmitted

with different storage devices. The purpose of the project is to eliminate the need of these

storage devices by allowing the different devices to synchronize between them using the

internet. The solution to the distance problem is a platform capable of collecting data,

processing it and serving it back upon request. Using this platform, the machines will be able

to communicate with each other in almost real-time independently from their location. After

studying the existing research in this field we concluded that there are numerous others

working on machine-to-machine communication and control through the internet. Using the

existing research we will be able to build a platform of applications that will be able to collect

data from different devices, process it and redistribute it. The most important one of the

applications will be the ASP.Net webpage project that will allow users to manipulate the

devices and manage/visualize data. The different components of the system will

communicate using HTTP protocol through the port 80 and use an XML-based custom

language. Because of its high configurability, flexibility, low price and robustness the

solution will be applicable in almost every situation.

Key words
Manufacturing, metal forming, process chain, communication, internet

Introduction

A standard and simplified manufacturing process includes machines in different rooms,

buildings, even continents. Testing devices determine the parameters of a work piece;

simulation equipment processes the data from the simulation equipment. All these results are

used by the cold presses that use simulation data and the measuring data to test the

manufacturing of the part by creating the actual item. The data between the testing,

simulation and manufacturing devices is usually transmitted with optical discs or any kind of

storage devices.

The purpose of the project is to eliminate the need of these storage devices by allowing the

different devices to synchronize between them using the internet. Using the platform offered

mailto:vencel.biro@tcm.utcluj.ro
mailto:banabic@tcm.utcluj.ro

2

by the project devices will be able to communicate with each other in almost real-time

independently from their location. The solution to the distance problem is a platform capable

of collecting data, processing it and serving it back upon request. The platform needs to be

generic enough to be used with multiple machines (by offering interfaces and data formats

that are standard within the system). It also needs to be easily accessible by the authorized

personnel and needs to be able to scale well. Besides the communication the system will be

able to keep track of many other parameters of the devices like status, error messages and

statistics.

State-of-art in the web based platforms in manufacturing

With the web based framework Bouzakis et al. (2009) propose that designers and

manufacturers communicate for the manufacturing of a work piece in a platform-

independent, easy, fast and more economical way. A similar structure we intend to develop in

DaCoTraP project. Lan (2004) presents a similar system specialized in rapid prototyping and

manufacturing. A central server application is used by operators and machines to work

together on rapid prototyping tasks. Brown et al. (2004) describe a web-enabled repository

system that has been designed for supporting distributed automotive component

development. Byrne et al. (2010) presents three different approaches to simulation while

Chen et al. (2006) describe a framework for an automotive body assembly process design

system. The system has the advantage of an open structure that can be easily modified and

adapted to accommodate existing assemblies and to suggest areas for improvement.

DaCoTraP (Data Collect/Transfer Platform)

DaCoTraP is an application formed by multiple components all tied together by a central

database. These components all work together to gather data from different devices, process

this data and distribute it among the same or other devices. The uniqueness of the platform is

given by its robustness and configurability. There are countless real life applications that try

to solve the issue of different machines communicating with each other over the internet over

large distances, like Kumar Parida (2009) in his PhD thesis. The application differs from

these by not considering speed as a priority and not worrying about packet loss. Instead the

project focuses on being robust and supporting thousands of connected machines while

making sure that no data is lost or corrupted.

The robustness of the system is ensured by design: the system is a non-real-time system. The

packages sent by the machines will not arrive at the same time instead the machines each

send packets in certain configurable intervals ensuring that the system has a steady low load.

The system also aims towards being very open towards different types of machines. While

the server side of the application uses state-of-the-art technologies, abstractions and

frameworks the client are allowed to be very low level application which only need to

support sending packets through the internet and parsing text. This allows the system to

support a large number of different client types.

3

Database serverServer side

U
ti

lit
ie

s

Business

ADO.Net Entity Framework

DaCoTraP
Maintenance

Service

Data Service

Mobile

Entities...

Entity managers... Parsers

API

Security

Communication Archiving

VisualizationEncryption

File manager

Image manager

Math Strings Statistics Settings

Localization tools Permission tools

Database

HTTP

Mobile Browser

M
ea

su
re

m
en

t

Si
m

u
la

ti
o

n

Ex
ec

u
ti

o
n

HTTP

Figure 1 - Overall structure of the DaCoTraP platform

One other important quality that distinguishes this project from the other similar projects

mentioned beforehand is that the area affected by the software does not have to be limited to

a single factory; multiple machines from factories, laboratories from all over the world can

work together by communicating, building a central knowledgebase and generating useful

information.

Project/Solution structure
The .Net solution will contain the following projects: the main Web application simply called

DaCoTraP, a Windows service called MaintenanceService, and the web service responsible

for the communication and containing the API called DataService. The DaCoTraP project

will also contain the mobile version of the application which does not form a standalone

project but it is simply part of the same web application.

Besides the main projects which all act as user interfaces and top layers in the architecture

the solution contains a project called Business (containing the manager classes that are

collectively used by the top-level layers) and a project called ProjectUtilities or Utilities

which will contain the common interfaces, constants, enumerations and data transfer objects

used through the whole project and is referenced by every other application layer. The names

of the projects are shortened for the sake of readability; the assemblies will be strongly

named according to .Net standards. For logging purposes the Apache Log4Net library will be

used.

The web application that allows users to manage the tasks and visualize data is going to be

built in ASPX taking advantage of the Ajax Control Toolkit and the JQuery JavaScript

library. The content will be completely separated from the design by using CSS. To visualize

4

the data Microsoft web charting will be used which is part of the .Net framework since

version 4.0. The application will run on an IIS 7+ webserver in integrated mode. To be able

to handle high traffic and server farms the application will take advantage of Out-Of-Process

session handling using an SQL server to store users’ session data.

The MaintenanceService is a Windows service that will be responsible for the management

of the database and execution of asynchronous tasks. The MaintenanceService will send

emails from the email queue; generate reports and notifications at end of specific periods,

archive the data, issue tasks for devices, clean up, take care of user registrations and many

more. All the tasks of the service will run on separate thread controlled by separate timers.

The interval between the tasks can be configured using the application configuration file but

the execution of a task can also be tied to a trigger. Besides Log4Net Windows event logging

will be used to message the administrators about the status of the service.

The purpose of the .Net web service is the receiving of the device data packages and the

providing of the responses. The service will use the System.Xml.XmlDocument .Net

framework class to validate and process incoming messages and to construct the responses. In

the future the service might be expanded to host different applications (Silverlight, Flash) and

to offer these applications a RIA service façade.

The same business layer of the application is used by the primary layers and it contains the

most important part of the application: the ADO.Net Entity Framework data model. All the

business functionality is implemented in manager classes inside the Business layer. By using

an Entity Framework data model there is no need for a separate database layer. The generated

database model will host all the database entities which can be used as DTOs between the

primary layers and the Business layer. In case a DTO needs to be used through more layers it

should be separated and moved to the ProjectUtilities. There is usually a manager for every

entity.

The managers implement the Singleton and Unit of Work patterns. Using these patterns and

supplying the database connection string to all methods of the managers the Business layer is

able to operate in stateless mode; this solves the problem of using the same business layer for

a stateless (DaCoTraP web application) and “stateful” applications (MaintenanceService).

Communication
The key component in the communication is a .Net web service which will be called

DataService. This DataService exposes two categories of methods: the first category only

contains one method which is aimed to serve the devices; the other category will contain API

members mostly targeted to serve data (mostly test results) to third party clients.

The system will only have a single method responsible for device communication. It will

have a string return type and a single string parameter. The service description (WSDL) will

be short; this will shift the implementation effort from the devices to the DaCoTraP

application because the devices will only have to be able to call one web method. The

communication will be one sided; always initiated by the devices by calling this method.

5

[WebMethod]
public string CollectDeviceData(string xmlData)

The communication protocol will consist of a very basic SOAP over HTTP. Institutions and

companies usually have very strict firewall rules and forbid communication in through almost

every port. This is why the port 80 will be used for client-server communication solving the

quite big problem of firewalls; the port 80 communication is allowed by every firewall.

Measurement Simulation Manufacture

Send to server (TNetwork)

Server

Request (TNetwork)

Send to server (TNetwork)

Return answer (TNetwork)

Wait interval (TWait)

Gather data (TRead)

Process data

Measure (TMeasure)

Process data

Wait interval (TWait)

Gather data (TRead)

Request (TNetwork)

Return answer (TNetwork)

Process data

Send to server (TNetwork)

Simulate (TSimulate)

Manufacture (TManufacture)

Figure 2 - Sequence diagram illustrating a full Measurement - Simulation - Manufacture cycle

The single parameter the CollectDeviceData method accepts is a string which itself is an

XML document. These XMLs are constructed by the devices and contain separate formats

with the exception of the authentication block that will identify the sending device. This

6

package will be processed by the server and a response will be sent back as the return type of

the web method.

There will be two types of messages based on the purpose of the device: data sending

messages that send information and do not expect any information from the servers besides

an OK or NOK and data requesting messages that expect the server to send them data; these

will receive a formatted XML document from the server as a response to their request.

Messages sent by the clients can have the following purposes:

- Send availability: the device will be able to communicate its status to the server.

Users will be able to see if the machine is idle, restarting, in error mode or simply

unreachable

- Send technical information: technical data can be sent for example by the presses

setting their manufacturing year, service status, serial numbers and other data

unknown at the time of the registration

- Send error messages: error logs can be uploaded to the server

- Send results: results can be uploaded to the server

- Request tasks: the machine receives tasks if there are any issued to it

- Request settings: the machines can request settings from the server like the correct

time, default speed and force parameters

The packages used for communication need to be well-formed and valid Xml documents. The

casing of the Xml documents needs to be respected by the clients.

<?xml version="1.0"
encoding="utf-8"?>
<Request type="task">
 <Auth>
 <Username>usr</Username>
 <Password>pass</Password>
 <DeviceId>21EC2020-3AEA-
1069-A2DD-08002B30309D
 </DeviceId>
 </Auth>
 <GetTasks>
 <FromDate>
 1269508261
 </FromDate>
 <ToDate>
 126950826055
 </ToDate>
 </GetTasks>
</Request>

<?xml version="1.0" encoding="utf-8"?>
<xs:schema attributeFormDefault="unqualified" elementFormDefault="
qualified" xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="Request">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Auth">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Username" type="xs:string" />
 <xs:element name="Password" type="xs:string" />
 <xs:element name="DeviceId" type="xs:string" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="GetTasks">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="FromDate" type="xs:unsignedInt" />
 <xs:element name="ToDate" type="xs:unsignedLong" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="type" type="xs:string" use="required" />
 </xs:complexType>
 </xs:element>
</xs:schema>

Code 1 - Task request package Xml document and Xml schema

7

Storage
The application suite will use one central Microsoft SQL Server. An Entity Framework

model will be generated based on this SQL Server structure and the database will be

manipulated with Linq queries. The usage of Linq queries will make the maintenance of the

data access very easy. The amount of data received from the devices will be huge especially

if all the status and error message history has to be kept in the system. This could end up

generating tens of millions of database records and querying a table this large is problematic.

To resolve this issue, layers of archiving will be introduced based on the freshness of the

data. Besides archiving the freshest data record will also be kept in a separate table. In the

case of error messages the arriving message will be inserted in many different tables

simultaneously: the actual data table (holding only the latest record), the daily data table, the

weekly data table then the monthly yearly and overall. When querying for data the system

will always try to use the database table with the least records. The current status of the

device or the time of the last sent record can easily be determined using the actual data table.

Every non-peak hour (eg. from midnight to 3 AM) the MaintenanceService cleans up the

expired data. Each of the huge tables will have well defined indexes and the simple queries

will be pre-compiled. The system will rely on the System.Web.Caching namespace to store

reusable data.

Conclusions

DaCoTraP platform will be more flexible than the already existing solution by allowing

limitless number of devices to be connected with each other and making the communication

independent from the content. It eliminates the need for physical data carriers and the

limitation of range; the number of device types can be easily increased by implementing the

client application for more types of machines. After completion the solution can be extended

with numerous third party features by using the API. For example a desktop application can

download data and visualize it on a big screen placed at the entrance of the facility; ATMs

can display donation requests while offering real production data. A mobile version could

offer users almost the same functionality as the web application and mobile apps could use

the service as their service façade.

The prototype of the DaCoTraP platform is being implemented in the Sheet Metal Forming

Research Centre (CERTETA) belong the Technical University of Cluj Napoca.

8

References
K.-D. Bouzakis, G. Andreadisa, A. Vakali, M. Sarigiannidou, Automating the manufacturing

process under a web based framework, Advances in Engineering Software, 40 (2009) 956–

964

D. Brown, D. Leal, C. McMahon,R. Crossland, J. Devlukia, A Web-enabled virtual

repository for supporting distributed automotive component development, Advanced

Engineering Informatics, 18 (2004), 173–190

J. Byrne, C. Heavey, P. J. Byrne, A review of Web-based simulation and supporting tools,

Simulation Modelling Practice and Theory, 18 (2010) 253–276

G. Chen, J. Zhou, W. Cai, X. Lai, Z. Lin, R. Menass, A framework for an automotive body

assembly process design system, Computer-Aided Design, 38 (2006) 531–539

S. Kumar Parida, Framework and Implementation of a Vision Based Tele-robotic Control

over Internet for an Industrial Robot, PhD Thesis, IIT Kharagpur, 2009 November

H. Lan, Web-based rapid prototyping and manufacturing systems: A review, Computers in

Industry, 54 (2004) 51–67

H. Lan, Y. Ding, J. Hong, H. Huang, B. Lu, A web-based manufacturing service system for

rapid product development, Computers in Industry, 60 (2009) 643–656

S. Millett, Professional ASP.NET Design Patterns, Wiley Publishing, Inc., Indiana, USA,

2010

M. Perdeck, ASP.NET Site Performance Secrets, Packt Publishing Ltd., Birmingham, UK,

October 2010

Acknowledgments: this paper has been elaborated as part of the projects: "PhD research in

the field of engineering with the purpose of developing a science-based society - SIDOC",

Contract no. POSDRU/88/1.5/S/60078 and PCCE-100/2010.

